Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
ACS Sens ; 7(11): 3470-3480, 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2117058

ABSTRACT

In early 2022, the number of people infected with the highly contagious mutant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), called Omicron, was increasing worldwide. Therefore, several countries approved the lateral flow assay (LFA) strip as a diagnostic method for confirming SARS-CoV-2 instead of reverse transcription-polymerase chain reaction (RT-PCR), which takes a long time to generate the results. However, owing to the limitation of detection sensitivity, commercial LFA strips have high false-negative diagnosis rates for patients with low virus concentrations. Therefore, in this study, we developed a portable surface-enhanced Raman scattering (SERS)-LFA reader based on localized surface plasmon effects to solve the sensitivity problem of the commercial LFA strip. We tested 54 clinical samples using this portable SERS-LFA reader, which generated 49 positive and 5 negative results. Out of the 49 positive results, SERS-LFA classified only 2 as false negative, while the commercial LFA classified 21 as false negative. This confirmed that the false-negative rate had significantly improved compared to that of commercial LFA strips. We believe that the proposed SERS-LFA system can be utilized as a point-of-care diagnostic system to quickly and accurately determine a virus infection that could spread significantly within a short period.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Spectrum Analysis, Raman/methods , COVID-19/diagnosis , Point-of-Care Systems , Biological Assay
2.
JMIR Res Protoc ; 11(6): e35960, 2022 Jun 08.
Article in English | MEDLINE | ID: covidwho-1910895

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is characterized by abnormalities in social communication and limited and repetitive behavioral patterns. Children with ASD who lack social communication skills will eventually not interact with others and will lack peer relationships when compared to ordinary people. Thus, it is necessary to develop a program to improve social communication abilities using digital technology in people with ASD. OBJECTIVE: We intend to develop and apply a metaverse-based child social skills training program aimed at improving the social interaction abilities of children with ASD aged 7-12 years. We plan to compare and analyze the biometric information collected through wearable devices when applying the metaverse-based social skills training program to evaluate emotional changes in children with ASD in stressful situations. METHODS: This parallel randomized controlled study will be conducted on children aged 7-12 years diagnosed with ASD. A metaverse-based social skills training program using digital technology will be administered to children who voluntarily wish to participate in the research with consent from their legal guardians. The treatment group will participate in the metaverse-based social skills training program developed by this research team once a week for 60 minutes per session for 4 weeks. The control group will not intervene during the experiment. The treatment group will use wearable devices during the experiment to collect real-time biometric information. RESULTS: The study is expected to recruit and enroll participants in March 2022. After registering the participants, the study will be conducted from March 2022 to May 2022. This research will be jointly conducted by Yonsei University and Dobrain Co Ltd. Children participating in the program will use the internet-based platform. CONCLUSIONS: The metaverse-based Program for the Education and Enrichment of Relational Skills (PEERS) will be effective in improving the social skills of children with ASD, similar to the offline PEERS program. The metaverse-based PEERS program offers excellent accessibility and is inexpensive because it can be administered at home; thus, it is expected to be effective in many children with ASD. If a method can be applied to detect children's emotional changes early using biometric information collected through wearable devices, then emotional changes such as anxiety and anger can be alleviated in advance, thus reducing issues in children with ASD. TRIAL REGISTRATION: Clinical Research Information Service KCT0006859; https://tinyurl.com/4r3k7cmj. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/35960.

3.
Vaccines (Basel) ; 10(5)2022 Apr 30.
Article in English | MEDLINE | ID: covidwho-1820447

ABSTRACT

Several COVID-19 platforms have been licensed across the world thus far, but vaccine platform research that can lead to effective antigen delivery is still ongoing. Here, we constructed AdCLD-CoV19 that could modulate humoral immunity by harboring SARS-CoV-2 antigens onto a chimeric adenovirus 5/35 platform that was effective in cellular immunity. By replacing the S1/S2 furin cleavage sequence of the SARS-CoV-2 Spike (S) protein mounted on AdCLD-CoV19 with the linker sequence, high antigen expression was confirmed in various cell lines. The high levels of antigen expression contributed to antigen-specific antibody activity in mice and non-human primates (NHPs) with a single vaccination of AdCLD-CoV19. Furthermore, the adenovirus-induced Th1 immune response was specifically raised for the S protein, and these immune responses protected the NHP against live viruses. While AdCLD-CoV19 maintained neutralizing antibody activity against various SARS-CoV-2 variants, it was reduced to single vaccination for ß and ο variants, and the reduced neutralizing antibody activity was restored with booster shots. Hence, AdCLD-CoV19 can prevent SARS-CoV-2 with a single vaccination, and the new vaccine administration strategy that responds to various variants can maintain the efficacy of the vaccine.

4.
Atmosphere ; 12(11):1496, 2021.
Article in English | MDPI | ID: covidwho-1512099

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is a general health crisis and has irreversible impacts on human societies. Globally, all people are at risk of being exposed to the novel coronavirus through transmission of airborne bioaerosols. Public health actions, such as wearing a mask, are highly recommended to reduce the transmission of infectious diseases. The appropriate use of masks is necessary for effectively preventing the transmission of airborne bioaerosols. The World Health Organization (WHO) suggests washing fabric masks or throwing away disposable masks after they are used. However, people often use masks more than once without washing or disposing them. The prolonged use of a single mask might—as a result of the user habitually touching the mask—promote the spread of pathogens from airborne bioaerosols that have accumulated on the mask. Therefore, it is necessary to evaluate how long the living components of bioaerosols can be viable on the masks. Here, we evaluated the viability of airborne Bacillus subtilis (B. subtilis) in bioaerosols filtered on woven and anti-droplet (non-woven) face masks. As a simulation of being simultaneously exposed to sand dust and bioaerosols, the viability rates of bioaerosols that had accumulated on masks were also tested against fine dust and airborne droplets containing bacteria. The bioaerosols survived on the masks immediately after the masks were used to filter the bioaerosols, and the bacteria significantly proliferated after one day of storage. Thereafter, the number of viable cells in the filtered bioaerosols gradually decreased over time, and the viability of B. subtilis in bioaerosols on the masks varied, depending on the mask material used (woven or non-woven). Despite the reduction in viability, bioaerosols containing living components were still found in both woven and anti-droplet masks even after six days of storage and it took nine days not to have found them on masks. The number of viable cells in bioaerosols on masks significantly decreased upon exposure of the masks to fine dust. The results of this study should provide useful information on how to appropriately use masks to increase their duration of effectiveness against bioaerosols.

5.
Int J Environ Res Public Health ; 18(15)2021 07 26.
Article in English | MEDLINE | ID: covidwho-1325675

ABSTRACT

The coronavirus disease (COVID-19) pandemic is a global health threat and has posed a challenge for society and social care services as well as healthcare systems. Due to the risks involved in being exposed to the virus, public health actions such as wearing masks and physical distancing are necessary to reduce its spread. However, using non-validated masks is a serious issue as such masks may provide inadequate protection against airborne bioaerosol transmission, resulting in the spread of the virus. Therefore, it is necessary to evaluate the filtering performances of the masks against bioaerosols as well as particulate matter (PM). Here, we evaluated the filtering performances of sixteen different masks (four brands each of woven, antidroplet, KF80, and KF94 masks) commercially available in Korea with high market shares. As a simulation of being exposed to bioaerosols and to the yellow dust commonly found in Korea, the filtration efficiency levels of the masks were tested against airborne bacteria-containing droplets and against fine dusts of different ranges of particle sizes. Their filtration efficiency levels against the droplets showed strong positive correlations, specifically Pearson correlation coefficient r values of 0.917, 0.905, and 0.894, with their efficiency levels against PM1.0, PM2.5, and PM10, respectively. The results of this study should be useful for choosing appropriate masks, including those that meet filtering performance requirements.


Subject(s)
COVID-19 , Bacteria , Filtration , Humans , Particle Size , Republic of Korea , SARS-CoV-2
6.
Immune Netw ; 21(1): e1, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1138866

ABSTRACT

The emergence of a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a significant health concern worldwide. Undoubtedly, a better understanding of the innate and adaptive immune responses against SARS-CoV-2 and its relationship with the coronavirus disease 2019 (COVID-19) pathogenesis will be the sole basis for developing and applying therapeutics. This review will summarize the published results that relate to innate immune responses against infections with human coronaviruses including SARS-CoV-1 and SARS-CoV-2 in both humans and animal models. The topics encompass the innate immune sensing of the virus to the dysregulation of various innate immune cells during infection and disease progression.

SELECTION OF CITATIONS
SEARCH DETAIL